Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(45): 28634-28643, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30406239

RESUMO

This paper aims to analyze the competition of single particle anisotropy and interparticle interactions in nanoparticle ensembles using a random anisotropy model. The model is first applied to ideal systems of non-interacting and strongly dipolar interacting ensembles of maghemite nanoparticles. The investigation is then extended to more complex systems of pure cobalt ferrite CoFe2O4 (CFO) and mixed cobalt-nickel ferrite (Co,Ni)Fe2O4 (CNFO) nanoparticles. Both samples were synthetized by the polyol process and exhibit the same particle size (DTEM ≈ 5 nm), but with different interparticle interaction strengths and single particle anisotropy. The implementation of the random anisotropy model allows investigation of the influence of single particle anisotropy and interparticle interactions, and sheds light on their complex interplay as well as on their individual contribution. This analysis is of fundamental importance in order to understand the physics of these systems and to develop technological applications based on concentrated magnetic nanoparticles, where single and collective behaviors coexist.

2.
Nanoscale ; 8(4): 2081-9, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26697925

RESUMO

Two kinds of nanocomposites of transition metal oxides were synthesized and investigated. Each nanocomposite comprises nanoparticles of La0.67Ca0.33MnO3 and CoFe2O4 in similar volume fractions, however arranged with different morphologies. The temperature-dependent magnetic and electrical properties of the two systems are found to greatly differ, suggesting different degrees of interaction and coupling of their constituents. This is confirmed by magnetic field-dependent experiments, which reveal contrasted magnetization reversal and magnetoresistance in the systems. We discuss this morphology-physical property relationship, and the possibility to further tune the magnetism and magneto-transport in such nanocomposites.

3.
Nanoscale ; 7(32): 13576-85, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26203789

RESUMO

Magnetic properties of iron oxide nanoparticles with spinel structure are strictly related to a complex interplay between cationic distribution and the presence of a non-collinear spin structure (spin canting). With the aim to gain better insight into the effect of the magnetic structure on magnetic properties, in this paper we investigated a family of small crystalline ferrite nanoparticles of the formula CoxNi1-xFe2O4 (0 ≤x≤ 1) having equal size (≈4.5 nm) and spherical-like shape. The field dependence of magnetization at low temperatures indicated a clear increase of magnetocrystalline anisotropy and saturation magnetization (higher than the bulk value for CoFe2O4: ∼130 A m(2) kg(-1)) with the increase of cobalt content. The magnetic structure of nanoparticles has been investigated by Mössbauer spectroscopy under an intense magnetic field (8 T) at a low temperature (10 K). The magnetic properties have been explained in terms of an evolution of the magnetic structure with the increase of cobalt content. In addition a direct correlation between cationic distribution and spin canting has been proposed, explaining the presence of a noncollinear spin structure in terms of superexchange interaction energy produced by the average cationic distribution and vacancies in the spinel structure.

4.
Phys Chem Chem Phys ; 16(10): 4843-52, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24469688

RESUMO

We report the detailed structural characterization and magnetic investigation of nanocrystalline zinc ferrite nanoparticles supported on a silica aerogel porous matrix which differ in size (in the range 4-11 nm) and the inversion degree (from 0.4 to 0.2) as compared to bulk zinc ferrite which has a normal spinel structure. The samples were investigated by zero-field-cooling-field-cooling, thermo-remnant DC magnetization measurements, AC magnetization investigation and Mössbauer spectroscopy. The nanocomposites are superparamagnetic at room temperature; the temperature of the superparamagnetic transition in the samples decreases with the particle size and therefore it is mainly determined by the inversion degree rather than by the particle size, which would give an opposite effect on the blocking temperature. The contribution of particle interaction to the magnetic behavior of the nanocomposites decreases significantly in the sample with the largest particle size. The values of the anisotropy constant give evidence that the anisotropy constant decreases upon increasing the particle size of the samples. All these results clearly indicate that, even when dispersed with low concentration in a non-magnetic and highly porous and insulating matrix, the zinc ferrite nanoparticles show a magnetic behavior similar to that displayed when they are unsupported or dispersed in a similar but denser matrix, and with higher loading. The effective anisotropy measured for our samples appears to be systematically higher than that measured for supported zinc ferrite nanoparticles of similar size, indicating that this effect probably occurs as a consequence of the high inversion degree.

5.
J Nanosci Nanotechnol ; 11(11): 10136-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22413356

RESUMO

Stoichiometric magnetic nanosized ferrites MFe2O4 (M = Mn, Co, Ni) were prepared in form of nearly spherical nanocrystals supported on a highly porous silica aerogel matrix, by a sol-gel procedure. X-ray diffraction and transmission electron microscopy indicate that these materials are made out of non-agglomerated ferrite nanocrystals having size in the 5-10 nm range. Investigation by Mössbauer Spectroscopy was used to gain insights on the superparamagnetic relaxation and on the inversion degree. Magnetic ordering at room temperature varies from superparamagnetic in the NiFe2O4 sample, highly blocked (approximately 70%) in the MnFe2O4 sample and nearly fully blocked in the CoFe2O4 sample. A fitting procedure of the Mössbauer data has been used in order to resolve the spectrum into the tetrahedral and octahedral components; in this way, an inversion degree of 0.68 (very close to bulk values) was obtained for 6 nm silica-supported CoFe2O4 nanocrystals.

6.
J Phys Chem B ; 109(50): 23888-95, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16375374

RESUMO

FeCo-Al2O3 nanocomposite aerogels were studied by high-resolution electron microscopy, energy filtered transmission electron microscopy, Mössbauer spectroscopy, and measurements of static magnetizations and hysteretic behavior. The combined use of such techniques provided insights on the formation of bcc FeCo nanocrystalline particles inside the alumina matrix, which is promoted by thermal treatment under hydrogen flow of the parent aerogel. Sample characteristics such as alloy composition and crystallinity, influence of the matrix on the structural evolution, and resulting magnetic properties were investigated as a function of the temperature and time of the reduction treatment.

7.
Phys Rev Lett ; 93(20): 207001, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15600957

RESUMO

We performed zero and transverse field muon spin rotation experiments on a large number of YBa2Cu3O6+x samples. We detect the coexistence of antiferromagnetic (AF) short range magnetism with superconductivity below T(f) < or = 10 K in compositions 0.37 < or = x < or = 0.39. Most muons experience local AF fields, even when a SQUID detects a full superconducting volume fraction, which points to a local minimal interference organization of short AF stripes embedded in the superconductor. A detailed phase diagram is produced and the consequences of the minimal interference are discussed.

8.
11.
Comput Methods Programs Biomed ; 38(4): 245-52, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1473344

RESUMO

We describe a transputer-based system suitable for accurate measurements of single-fiber electromyographic jitter. It consists of a conventional electromyograph, a home-made interface and a commercially available transputer-based board installed within a PC/AT compatible. Taking advantage of the concurrent operation of two transputer modules, the system features simultaneous data acquisition and statistical signal processing: while data are acquired and analyzed, a real-time visualization of the signal latency and its variability is provided. In the present configuration, the system can acquire and analyze up to 40,000 consecutive action potentials, which can be grouped into up to eight sets at different stimulation rates programmable up to 16 Hz. Since the determination of the electromyographic signal latency relies on least-squares smoothing and interpolation of the acquired data rather than on amplitude-threshold triggering, a low value (0.7 microsecond) of so called technical jitter is achieved. Computing power and memory can be easily extended by addition of transputer-based modules. Typical results of data acquisition and on-line analysis are reported.


Assuntos
Diagnóstico por Computador/métodos , Eletromiografia/métodos , Microcomputadores/estatística & dados numéricos , Processamento de Sinais Assistido por Computador/instrumentação , Diagnóstico por Computador/instrumentação , Eletromiografia/instrumentação , Estudos de Avaliação como Assunto , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...